THREE YEARS FOLLOW-UP OF A LARGE CYST: A CASE REPORT

Chadi Torbay* | Valérie Batrouni**

Abstract

The main goal of root canal therapy is to eliminate the pathogenic effects of bacteria from the root canal system and that through chemomechanical debridement followed by inert root filling to prevent microorganisms from infecting or re-infecting root canals and the periradicular tissues [1]. Defining clinical healing of apical periodontitis after endodontic treatment is very difficult especially finding a relevant radiologic examination method for accurate observation. Therefore, various radiologic techniques were used among which we site the peri-apical x-rays, the orthopantomogram, the cone beam computed tomography, and that depending on the size and the localization of the pathological entity. The aim of the present paper was to show the treatment outcome and the healing of large periapical radiolucency controlled with CBCT.

Keywords: Cone beam computed tomography - apical periodontitis - conventional endodontics.

Résumé

Le principal objectif du traitement canalaire est d’éliminer les bactéries pathogènes du système radiculaire. Cela est accompli par le débridement chimio-mécanique suivi d’une obturation hermétique et inactive des racines pour empêcher les micro-organismes d’infecter ou de réinfecter les canaux radiculaires et les tissus périradiculaires [1]. Il est très difficile de définir la guérison clinique de la parodontite apicale après un traitement endodontique, en particulier de trouver une méthode d’examen radiologique pertinente pour une évaluation précise. Par conséquent, différentes techniques radiologiques ont été utilisées, parmi lesquelles on trouve la radiographie périapicale, la panoramique, la tomodensitométrie à faisceau conique, le choix de la technique étant en fonction de la taille et de la localisation de l’entié pathologique. Le but de cet article était de montrer le résultat du traitement et la cicatrisation dans le temps d’une lésion radioclaire périapicale importante, le contrôle étant radiologique.

Mots-clés: Tomodensitométrie à faisceau conique - parodontite apicale - endodontie conventionnelle.

* Dpt of Endodontics, Faculty of Dentistry, Lebanese University, Beirut, Lebanon Chaditorbay@hotmail.com

** Dpt of Endodontics, Faculty of Dentistry, Lebanese University, Beirut, Lebanon
Introduction

Within the concept of standard endodontics, the decision-making process to perform orthograde (non-surgical) treatment alone without apical surgery in cases of persistent apical periodontitis should bear in mind a long-term survival or success rates of root-filled teeth. This pre-evaluation includes multiple factors, individual case evaluation, and thorough treatment planning.

In addition, patients frequently tend to choose the least expensive treatment option. However, specific benefit-risk analysis or patient preference may favor apical surgery as the treatment of choice.

Case presentation

In December 2012, a 36-year-old Caucasian male reported to our dental clinic with his chief complaint: the discoloration in the upper central and lateral incisors. He requested an esthetic and a full rehabilitation treatment. A fast overview of the buccal cavity showed the absence of three molar teeth, and some small carries. The patient was asked to do a panoramic x-ray for a complete treatment plan. The preoperative panoramic radiograph revealed a huge apical radiolucency laying on the upper left maxilla, extending from the central incisal to the mesial incisal in the frontal plan and towards the nasal fossa in the sagittal plan (Fig. 1). Palpation for an accurate inspection of the buccal and lingual mucosa surrounding the teeth region revealed no tenderness but an open fistula on the buccal side without swelling. The patient revealed a history of no spontaneous pain, a possible accidental trauma, and mainly a chronic sensation of discomfort in the vestibule pointing the incisal plan. The preoperative panoramic radiograph aided by an electronic apex locator (EAL) and confirmed by taking a radiograph with the diagnostic file. The canals were enlarged in a crown-down technique using an association of rotary and manual instruments. Canals were irrigated with sodium hypochlorite (5.25%) throughout instrumentation using standard endodontic needle irrigation. Endodontic needles were used 3mm short from the working length and manual agitation was applied while irrigating. Canals were instrumented apically to sizes 50 closer to the radiographic apex certainly because we are confronting infected canals with periapical lesions. A master apical file radiograph was taken at the working length, and canals were then filled using the thermomechanical compaction technique of Gutta-percha. Restoration was followed by a definitive coronal restoration material of composite resin. Treatments were completed within 1 month from the date it was initiated. Before the definitive obturation, the cleaning protocol was carried out over multiple visits and calcium hydroxide was used as an intracanal medication between appointments.

Follow-up and Discussion

In this case report, the goal was to eliminate apical periodontitis (AP) [3], an inflammatory disorder of peri-radicular tissues caused by microorganism agents of endodontic origin [4]. The teeth were single-rooted with less complexed canal system, decreasing the presence of debris accumulation at the intercanal spaces and favoring the disinfection. Canals were instrumented apically to sizes 50 closer to the radiographic apex [5, 6].

No presence of overextended gutta-percha that may stimulate foreign body reaction in the apical tissues, and subsequently delay the healing time by almost 14 months [7].

With the only purpose to control the lesion, a follow-up control was undertaken every six months in average, with the aid of a panoramic x-ray. It can be valuable if properly done.
and evaluated (Fig 3). Improper positioning of the patient’s jaw within the focal trough can be an error source. When the jaws are positioned within this area, the radiograph will be clear. When the jaws are positioned outside this area, the images on the radiograph will appear blurred or indistinct. If the patient’s anterior teeth are not positioned in the groove on the bite-block and are either too far forward or back to the focal trough, the anterior teeth will appear blurred.

On the other hand, panoramic x-ray shows greater coverage and 4 times less radiation than 4 periapical radiographs.

Compared to CBCT, panoramic gives less radiation and the cost is less expensive. If we make a balance between Cost + radiation and radiographic diagnosis panoramic is highly enough to see the evolution of the lesion each six months.

Surgical intervention is always questioned if no healing or recovery is to be seen.

Finally, after 3 years, a CBCT was taken to confirm the 3D volume of the bone healing if it is in concordance with the panoramic (Fig 4). The healing time of this large apical periodontitis was around 19 months with a similarity of healing time described in the literature [8-10], indicating that one year is the minimal time required for most cases before concluding a healing outcome and/or surgical intervention.

Non-surgical success of apical periodontitis

The purpose of root canal treatment is to prevent the intracanal biofilm that can advance or the bacteria products that can egress to the peripex [11] leading to various categories of lesions that are given the overarching name of apical periodontitis [12]. That can be achieved by a microbe-free canal during multiple steps treatment: instrumentation, irrigation with sodium hypochlorite (NaOCl) solution, rinsing with EDTA and a microbicide dressing applied in multiple visit treatments [13].

When the treatment is performed with a significant reduction of the burden of root canal infection to a subcritical level [14] it will be associated with high healing rates: osseous regeneration, gradual reduction and resolution of the radiolucency on subsequent follow-up radiographs. Even though two or multiple visit protocol resulted in microbial reduction compared to one-visit protocol, substantial amounts of microbes remained in isthmuses and other inaccessible areas of the canal system [10, 12].

Moreover healing may be achieved despite of bacterial presence [13, 16, 20]. Therefore, surviving microorganisms present at the time of root filling are a potential risk that may result with time an unfavorable apical healing response [12].

Various terms have been used to define the absence or presence of symptoms, the complete or the partial resolution of the preoperatively existing periapical radiolucency that will categorize the outcomes of root canal treatment: Success and failure, healing and healed, effective and ineffective [14, 18]. Surgical or nonsurgical approaches are time-dependent and the outcome of the treatment is controlled through monitoring for longer periods and is related to a patient...
recall follow-up with a thorough clinical and radiographic examination [8, 19, 23, 24].

The outcome of root canal treatment improved from 86% at 10–17 years to 95% at 20–27 years post-treatment in both initial [25] and retreatment cases [26], suggesting that increasing the time periods for follow-ups should be considered [27] and thus with a low recall rate, the reported success rates could be over- or under-estimated [25]. A complete bone healing process is to be expected but it requires monitoring for a longer period [28], and it is more influential in nonsurgical root canal treatment than in intra-oral procedures [29]. The average healing time increased significantly by almost 1 year in type II root canal systems (Weine classification [30]). A follow-up period from 1 year to 4 years is mandatory; we need to motivate the patient and to increase the recall rate, the number of appointments and the radiographs [31]. A one-year follow-up period is too short to judge a tooth as ‘diseased’, and therefore reduce the number of unnecessary retreatments or surgical interventions unless signs of enlargement of a radiolucency and/or the persistence/emergence of symptoms.

Several factors alter the healing times and the treatment outcomes:

1-Internal factors regarding pulp condition (vital or non-vital), the periapical condition (with or without radiolucency), number of canals and complex pulp systems.

2-External factors regarding:
 a) The patient medical conditions (age, systemic diseases, immune response)
 b) The operating protocol treatment (apical preparations, reduction of intracanal bacteria, canal irrigation, debris removal or obturation technique fillings) [10].
 c) The experienced clinicians performing the endodontic treatment [31].
 d) The lack of adequate coronal seal, presence of true cysts, extraradicular infection, foreign body reactions or impaired healing [32].

 Persistent post-treatment apical radiolucency (incomplete bone healing and no reduction in the volume of a lesion) may occur due to [33]:
 - Residual intraradicular biofilm in the complex apical root canal system.
 - Extraradicular infection, generally in the form of periapical actinomycosis.
 - Extruded root canal filling or other exogenous materials that cause a foreign body reaction.
 - Accumulation of endogenous cholesterol crystals that irritate periapical tissues.
 - True cystic lesions.
 - Scar tissue healing of the lesion.

Cone beam computed tomography

Digital radiography is becoming increasingly more popular in the dental clinic. CBCT has gained considerable popularity since it was introduced during the 1990s, and has the potential to show periapical bone loss that is not readily visualized by periapical radiographs [34]. The volume of a bone lesion is usually larger than that depicted by the radiographic image. It has long been debated whether the character of the bone destruction and especially the radiological appearance may provide leads indicating that surgical treatment may be preferable to conventional root canal therapy. Also, whether bone healing after root canal treatment is ongoing or whether the treatment effort has been futile.
Although intraoral periapical radiography has been the dominant routine technique for years, there is uncertainty of conclusions about endodontic treatment outcome and it does not accurately demonstrate the presence of every lesion, the real size or its spatial relationship with the anatomical structures. The low values on sensitivity probably reflect the difficulty in detecting small periapical bone lesions. Therefore because of its higher sensitivity and specificity, Cone-beam computed tomography has been more successful in detecting periradicular changes [34, 35]. Thereby CBCT images have better diagnostic yield compared with conventional periapical radiography (PAR) and detect more periradicular defects than PAR in teeth with symptomatic irreversible pulpitis [36]. The outcomes of nonsurgical root canal treatment have also been assessed by CBCT and compared with PAR and that because failure rates have been well reported when using this technique at 6 months and 1 year in dogs and humans, respectively [37].

One advantage of this method is that it is easy to use. It also gives a three-dimensional image of the exposed area, which can be a significant advantage with multi-rooted teeth. However, recent reviews have indicated insufficient scientific evidence to support the assertion that the diagnostic accuracy of CBCT is greater than that of intraoral radiological techniques [38]. Also, the correlation between CBCT and PAR for post-treatment assessment of the presence and dimensions of periapical lesions for root filled molar teeth was poor [39]. The probability of overestimating post-treatment disease with CBCT has been suggested [37]. Nevertheless, in vivo and ex vivo studies have demonstrated that the use of CBCT enhances the interpretation of outcomes for root canal treatment [36, 40, 41]. Although CBCT ought to be employed to reassess the success rate of endodontic treatment there is, however, a risk of overestimating the frequency of endodontic failures as healing of a periapical bone lesion may take longer than anticipated earlier and its accuracy is still unknown. At a one-year follow-up after endodontic treatment, for instance, CBCT can show loss of bone, whilst intraoral periapical radiography indicates healing [42].

CBCT disadvantages are:

- Higher cost;
- Potentially higher radiation dose, depending on the equipment and the volume (field of view) used.

In a joint position statement by the American Association of Endodontists and the American Academy of Oral and Maxillofacial Radiology, it was recommended that ‘CBCT should only be used when the question for which imaging is required cannot be answered adequately by lower dose conventional radiography or alternate imaging modalities’ [43]. Also, the literature review performed by Sedentexct [44] recommends that CBCT cannot be justified for routine for endodontic diagnosis.

Although scientific evidence is lacking, it is reasonable to assume that conventional radiographic examination is not sufficiently sensitive to provide information about different periapical lesion conditions.

Conclusion

The outcome and healing time of this periapical lesion is interpreted with caution through long follow-up periods. The nonsurgical root canal treatment of this case appeared to be more favorable because of simple roots with non-vital pulps rather than treated roots with procedural errors, short or poor root filling density.

The following questions are always addressed:

- How much time is needed to evaluate the healing of an apical periodontitis?
- Which radiographic method is the most accurate for assessment of bone tissue changes over time?
- Do we really gain bone reconstruction from waiting a longer period or do we have to go on a surgical approach?

Cone beam computed tomography can be expected to assume increasing importance in diagnosis of periapical bone tissue changes and in monitoring the status of root canal treated teeth. To date, the diagnostic accuracy has not been adequately investigated or positively highlighted therefore there are limitations and insufficient knowledge about the accuracy of the different radiographic techniques in use clinically. Unless there is presence of small bone lesions where CBCT is more sensitive than other radiography, adequate evaluation of differences between the radiological techniques is on a histopathological level where biopsy is taken upon surgical intervention.

The gold standard may be to undertake studies with CBCT scanning and subsequent confirmation of periradicular disease with histological examination, but this would be difficult on human ethical bases.
References

